
Model equations:
When i = 2, 3, ..., s1, the generalized equation is
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The last mass, the equation is
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Introduction: In this paper we present a decentralized stabilization control
technique for linear time-varying interconnected systems. By the optimal control
technique with respect to a performance index, we have developed the subsystem
based time-varying feedback law decentrally. Since the considered system is
time-varying, the time-varying Riccati differential equations need to be solved.
The backward Euler’s method is used to obtain solutions from a sufficient large
time to the initial time with a guessed terminal values. When the initial conditions
are obtained, these Riccati equations will be introduced into the overall system for
the implementation.

Model description: A series of masses

Figure 1. A series of mass-spring-damper systems

The Decentralized Control Design:
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Computer simulations:
A 4-mass interconnected mass-spring-damper system is considered and the parameters are as
follows.
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Figure 2. Responses of mass-1 Figure 3. Responses of mass-2

Figure 4. Responses of mass-3 Figure 5. Responses of mass-4

Conclusion: The mass-spring-damper system is very common in the application field and many
systems can have the similar properties. In this paper we first make an interconnection model
and then derive a decentralized control design to make each mass approaches its reference
exponentially.
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