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INTRODUCTION: As systems and their components age, they naturally deteriorate, making preventive maintenance a
crucial strategy for maintaining system functionality and extending operational lifespan. Preventive maintenance not only
restores the system but also enhances its overall health, effectively slowing the aging process. While significant research has
focused on 1dentifying optimal preventive maintenance policies for repairable systems, these decisions often encounter
considerable uncertainty, compounded by the challenge of limited data. Therefore, maximizing the use of available
information becomes essential. In this paper, we introduce a Bayesian decision model designed to optimize the number of
preventive maintenance actions for systems maintained through periodic preventive maintenance policies. The system’s
deterioration 1s modeled using a non-homogeneous Poisson process with a power-law failure intensity. The model assumes
that after each preventive maintenance action, the system’s condition lies between "as good as new" (perfect repair) and "as
good as old" (minimal repair). Failures occurring between maintenance intervals are addressed through minimal repairs. A
numerical method and solution algorithm are provided to demonstrate the proposed approach for mechanical engineers 1n
practice.

MODEL DEVELOPMENT: To model the system’s deterioration process, a Weibull power law intensity function
A(t)=aftP~1 is applied within the non-homogeneous Poisson process (NHPP) framework. This function is chosen for its
flexibility and practical application 1n capturing the system’s aging behavior. In this formula, a serves as the scale parameter,
representing the system’s rate of deterioration, while [ 1s the shape parameter, reflecting how the failure rate evolves over
time. The variable t denotes the elapsed time. Figure 1 presents a timeline that visually represents this periodic PM model,
showing the intervals between PM actions, the system’s operational states, and the eventual replacement at the N-th PM
action.
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Figure 1. Timeline of Preventive Maintenance of a Machine.

THE ANALYSIS USING A NATURAL CONJUGATE PRIOR: Bayesian decision analysis can be quite challenging due
to the imtricate process of deriving posterior distributions, which often requires numerical integration techniques. This
complexity becomes particularly evident in cases like the current study, where two random variables, a and £, form the state
space. These variables represent key parameters governing the system’s degradation and failure dynamics, and calculating
their posterior distributions 1s typically computationally demanding. The advantage of using this conjugate prior 1s that it
simplifies the Bayesian analysis, eliminating the need for complex numerical integration. The natural conjugate prior
distribution 1s expressed as:

f(a, B) — Kab_lﬁb_l (e—adb)B_le—ach
By using equation (8) as the prior distribution for a and B3, the prior mean of interest can be easily derived, given by:

Elatf] =2 [(a +Ind — Int)™?]

Thus, the expected total cost per unit time 1n the prior analysis within the system’s life 7; can be rewritten as follows:
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The posterior distribution for a and 3, incorporating the likelihood of the observed breakdown times t4, to, ..., t,;, 1S glven

by f'(a,B) « L(ty,t3, ..., tnla, B) f (@, B).
By applying Bayes’ theorem, the posterior distribution becomes:
f’(a, ﬁ) x K'ab+n_1ﬁb+n_1(e_adb H?=1 ti)B—le—a(ch+tf)
This expression represents the updated belief about a and 3 after incorporating the observed data, with the prior knowledge
being refined by the information gained from the sample. The term K’ is a normalizing constant, and the exponential and
product terms account for the relationship between the observed data and the parameters.

COST EVALUATION: In this study, the system’s breakdown process 1s modeled as an NHPP with a power law intensity
function. Assuming that expert opinions and historical data provide a suitable prior distribution for conducting Bayesian
analysis, the expected total cost per unit time for the prior and posterior analyses can be reformulated from the following

equations:
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Figure 2. The Analytical Framework of the Bayesian PM Model..
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